login
A211490
Number of (n+1) X (n+1) -4..4 symmetric matrices with every 2 X 2 subblock having sum zero and one or two distinct values.
1
13, 17, 23, 33, 49, 75, 117, 185, 295, 473, 761, 1227, 1981, 3201, 5175, 8369, 13537, 21899, 35429, 57321, 92743, 150057, 242793, 392843, 635629, 1028465, 1664087, 2692545, 4356625, 7049163, 11405781, 18454937, 29860711, 48315641, 78176345
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-3).
Conjectures from Colin Barker, Jul 18 2018: (Start)
G.f.: x*(13 - 9*x - 11*x^2) / ((1 - x)*(1 - x - x^2)).
a(n) = 7 + (2^(1-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5)))) / sqrt(5).
(End)
EXAMPLE
Some solutions for n=3:
.-2..2.-2..2....0..0..0..0....1.-1.-1.-1....4.-4..4.-4...-3..1.-1..3
..2.-2..2.-2....0..0..0..0...-1..1..1..1...-4..4.-4..4....1..1.-1.-1
.-2..2.-2..2....0..0..0..0...-1..1.-3..1....4.-4..4.-4...-1.-1..1..1
..2.-2..2.-2....0..0..0..0...-1..1..1..1...-4..4.-4..4....3.-1..1.-3
CROSSREFS
Sequence in context: A143822 A172096 A022893 * A038680 A227916 A158072
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 13 2012
STATUS
approved