This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211480 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w + 2x + 3y = 1. 2
 0, 3, 8, 16, 27, 40, 56, 75, 96, 120, 147, 176, 208, 243, 280, 320, 363, 408, 456, 507, 560, 616, 675, 736, 800, 867, 936, 1008, 1083, 1160, 1240, 1323, 1408, 1496, 1587, 1680, 1776, 1875, 1976, 2080, 2187, 2296, 2408, 2523, 2640, 2760, 2883 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a guide to related sequences, see A211422. For n>2, this is the number of 1's in the partitions of 4n-4 into 4 parts. - Wesley Ivan Hurt, Mar 13 2014 List of triples: [4*k*(3*k-1), 4*k*(3*k+1), 3*(2*k+1)^2], respectively A014642, 8*A005449, 3*A016754. - Luce ETIENNE, May 31 2017 LINKS FORMULA Conjectures from Colin Barker, May 15 2017: (Start) G.f.: x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)). a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. (End) Conjecture: a(n) = (8*floor(n/3)*(2*n-3*floor(n/3)-1)+3*(1-(-1)^(n+2-floor((n+2)/3))))/2 = floor((2*n-1)^2/3). - Luce ETIENNE, May 25 2017 MATHEMATICA t[n_] := t[n] = Flatten[Table[w + 2 x + 3 y - 1, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211480 *) b[0] := 0; b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2])/(4 n), {i, 0, 2 n}]; Table[b[n - 1] + 2 (n - 1), {n, 50}] (* Wesley Ivan Hurt, Mar 13 2014 *) CROSSREFS Cf. A211422. Cf. A005449, A014642, A016754. Sequence in context: A225268 A211481 A115006 * A122796 A104249 A225253 Adjacent sequences:  A211477 A211478 A211479 * A211481 A211482 A211483 KEYWORD nonn AUTHOR Clark Kimberling, Apr 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 19:20 EST 2017. Contains 295976 sequences.