login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211480 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w + 2x + 3y = 1. 2
0, 3, 8, 16, 27, 40, 56, 75, 96, 120, 147, 176, 208, 243, 280, 320, 363, 408, 456, 507, 560, 616, 675, 736, 800, 867, 936, 1008, 1083, 1160, 1240, 1323, 1408, 1496, 1587, 1680, 1776, 1875, 1976, 2080, 2187, 2296, 2408, 2523, 2640, 2760, 2883 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For a guide to related sequences, see A211422.

For n>2, this is the number of 1's in the partitions of 4n-4 into 4 parts. - Wesley Ivan Hurt, Mar 13 2014

List of triples: [4*k*(3*k-1), 4*k*(3*k+1), 3*(2*k+1)^2], respectively A014642, 8*A005449, 3*A016754. - Luce ETIENNE, May 31 2017

LINKS

Table of n, a(n) for n=1..47.

FORMULA

Conjectures from Colin Barker, May 15 2017: (Start)

G.f.: x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)).

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5.

(End)

Conjecture: a(n) = (8*floor(n/3)*(2*n-3*floor(n/3)-1)+3*(1-(-1)^(n+2-floor((n+2)/3))))/2 = floor((2*n-1)^2/3). - Luce ETIENNE, May 25 2017

MATHEMATICA

t[n_] := t[n] = Flatten[Table[w + 2 x + 3 y - 1, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211480 *)

b[0] := 0; b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2])/(4 n), {i, 0, 2 n}]; Table[b[n - 1] + 2 (n - 1), {n, 50}] (* Wesley Ivan Hurt, Mar 13 2014 *)

CROSSREFS

Cf. A211422.

Cf. A005449, A014642, A016754.

Sequence in context: A225268 A211481 A115006 * A122796 A104249 A225253

Adjacent sequences:  A211477 A211478 A211479 * A211481 A211482 A211483

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 14 15:50 EDT 2018. Contains 313751 sequences. (Running on oeis4.)