login
A211479
Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having two, three or four distinct values for every i<=n and j<=n.
1
8, 22, 58, 150, 382, 962, 2402, 5958, 14702, 36130, 88498, 216198, 527038, 1282562, 3116738, 7565190, 18345422, 44452642, 107643922, 260526918, 630270622, 1524213890, 3684989858, 8906776518, 21523708718, 52004525602, 125633423218
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3).
Conjectures from Colin Barker, Jul 18 2018: (Start)
G.f.: 2*x*(4 - 5*x - 3*x^2) / ((1 - 2*x)*(1 - 2*x - x^2)).
a(n) = -3*2^n + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2)).
(End)
EXAMPLE
Some solutions for n=5:
..1...-1....1...-1....0....1....1...-1...-1...-1...-1....1....0...-1....1....0
..1....0...-1....1...-1....0....0....0....0...-1...-1...-1...-1....0....1....1
..1...-1...-1....1....1...-1....1....1...-1....0...-1....0...-1....1...-1....1
..1....0...-1....0...-1....1....1...-1....1....1....1...-1....1...-1....0....1
..0...-1...-1...-1....1...-1...-1....0....1...-1....0...-1....0....1....1...-1
..1....1....0....1....1...-1....0...-1....0....0....1....0...-1...-1....0....0
CROSSREFS
Sequence in context: A211530 A058404 A350123 * A318034 A326162 A126362
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2012
STATUS
approved