login
A211421
Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).
14
1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
OFFSET
0,2
COMMENTS
This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
FORMULA
The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(8*n,i)*binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) ~ 2^(10*n)*27^(-n)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
MAPLE
a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
seq(a(n), n = 0..16);
MATHEMATICA
Table[(8 n)!*(3 n)!/((6 n)!*(4 n)!*n!), {n, 0, 15}] (* Michael De Vlieger, Oct 04 2015 *)
PROG
(PARI) a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
(Magma) [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
CROSSREFS
Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A262740.
Sequence in context: A270409 A000473 A233094 * A097310 A223003 A228185
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 10 2012
STATUS
approved