login
A211399
Triangle T(n,k), 0 <= k <= n, given by (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...) DELTA (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) where DELTA is the operator defined in A084938.
3
1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 15, 18, 1, 0, 1, 37, 129, 58, 1, 0, 1, 83, 646, 877, 179, 1, 0, 1, 177, 2685, 8030, 5280, 543, 1, 0, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 0, 1, 749, 34777, 335162
OFFSET
0,9
COMMENTS
Contains A156920 as submatrix.
Row-reversal of A102365. - Philippe Deléham, Feb 12 2013
FORMULA
T(n,k) = k*T(n-1,k) + (2n-2k+1)*T(n-1,k-1) , T(n,n) = 1, T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A185411(n,k)/(2^(n-k)).
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A000012(n), A014307(n), A001147(n) for x = 0, 1, 2 respectively .
G.f.: 1/(1-xy/(1-x/(1-3xy/(1-2x/(1-5xy/(1-3x/(1-7xy/(1- ...(continued fraction).
EXAMPLE
Triangle begins :
1
0, 1
0, 1, 1
0, 1, 5, 1
0, 1, 15, 18, 1
0, 1, 37, 129, 58, 1
0, 1, 83, 646, 877, 179, 1
CROSSREFS
Left hand column sequences: A000007, A000012, A050488, A142965, A142966, A142968.
Right hand column sequences: A000340, A156922, A156923, A156924.
Row sums A014307(n).
Sequence in context: A007912 A019755 A085475 * A265192 A157012 A102365
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Feb 08 2013
STATUS
approved