login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211343 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the positive integers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2. 23
1, 2, 3, 1, 4, 0, 5, 2, 6, 0, 1, 7, 3, 0, 8, 0, 0, 9, 4, 2, 10, 0, 0, 1, 11, 5, 0, 0, 12, 0, 3, 0, 13, 6, 0, 0, 14, 0, 0, 2, 15, 7, 4, 0, 1, 16, 0, 0, 0, 0, 17, 8, 0, 0, 0, 18, 0, 5, 3, 0, 19, 9, 0, 0, 0, 20, 0, 0, 0, 2, 21, 10, 6, 0, 0, 1, 22, 0, 0, 4, 0, 0, 23, 11, 0, 0, 0, 0, 24, 0, 7, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The number of positive terms in row n is A001227(n).

If n = 2^j then the only positive integer in row n is T(n,1) = n

If n is an odd prime then the only two positive integers in row n are T(n,1) = n and T(n,2) = (n - 1)/2.

From Omar E. Pol, Apr 30 2017: (Start)

Conjecture 1: T(n,k) is the smallest part of the partition of n into k consecutive parts, if T(n,k) > 0.

Conjecture 2: the last positive integer in the row n is in the column A109814(n). (End)

LINKS

Robert Price, Table of n, a(n) for n = 1..28864 (rows n = 1..1000, flattened)

FORMULA

T(n,k) = floor((1 + A196020(n,k))/2).

T(n,k) = A237048(n,k)*A286001(n,k). - Omar E. Pol, Aug 13 2018

EXAMPLE

Triangle begins:

   1;

   2;

   3,  1;

   4,  0;

   5,  2;

   6,  0,  1;

   7,  3,  0;

   8,  0,  0;

   9,  4,  2;

  10,  0,  0,  1;

  11,  5,  0,  0;

  12,  0,  3,  0;

  13,  6,  0,  0;

  14,  0,  0,  2;

  15,  7,  4,  0,  1;

  16,  0,  0,  0,  0;

  17,  8,  0,  0,  0;

  18,  0,  5,  3,  0;

  19,  9,  0,  0,  0;

  20,  0,  0,  0,  2;

  21, 10,  6,  0,  0,  1;

  22,  0,  0,  4,  0,  0;

  23, 11,  0,  0,  0,  0;

  24,  0,  7,  0,  0,  0;

  25, 12,  0,  0,  3,  0;

  26,  0,  0,  5,  0,  0;

  27, 13,  8,  0,  0,  2;

  28,  0,  0,  0,  0,  0,  1;

  ...

In accordance with the conjectures, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The smallest parts of these partitions are 15, 7, 4, 1, respectively, so the 15th row of the triangle is [15, 7, 4, 0, 1]. - Omar E. Pol, Apr 30 2017

MATHEMATICA

a196020[n_, k_]:=If[Divisible[n - k(k + 1)/2, k], 2n/k - k, 0]; T[n_, k_]:= Floor[(1 + a196020[n, k])/2]; Table[T[n, k], {n, 28}, {k, Floor[(Sqrt[8n+1]-1)/2]}] // Flatten (* Indranil Ghosh, Apr 30 2017 *)

PROG

(Python)

from sympy import sqrt

import math

def a196020(n, k):return 2*n/k - k if (n - k*(k + 1)/2)%k == 0 else 0

def T(n, k): return int((1 + a196020(n, k))/2)

for n in range(1, 29): print [T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)] # Indranil Ghosh, Apr 30 2017

CROSSREFS

Columns 1-3: A000027, A027656, A175676.

Column k starts in row A000217(k).

Row n has length A003056(n).

Cf. A000203, A001227, A196020, A212119, A235791, A236104, A237048, A237591, A237593, A236001.

Sequence in context: A304791 A306646 A152832 * A039661 A293668 A214684

Adjacent sequences:  A211340 A211341 A211342 * A211344 A211345 A211346

KEYWORD

nonn,tabf,look

AUTHOR

Omar E. Pol, Feb 05 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 17:27 EST 2020. Contains 338769 sequences. (Running on oeis4.)