login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211204 a(1) = 2; for n > 1, a(n) > a(n-1) is the smallest prime for which the set {a(1), a(2), ..., a(n)} lacks at least one residue modulo every odd prime less than or equal to a(n). 2

%I #48 Jun 02 2022 10:31:14

%S 2,3,5,11,17,23,41,47,53,71,83,101,107,113,131,137,167,173,191,197,

%T 233,251,257,263,311,317,347,353,401,431,443,461,467,503,521,563,593,

%U 641,647,653,677,683,701,743,761,773,797,827,857,863,881,911,941,947,971

%N a(1) = 2; for n > 1, a(n) > a(n-1) is the smallest prime for which the set {a(1), a(2), ..., a(n)} lacks at least one residue modulo every odd prime less than or equal to a(n).

%C By construction, for every odd prime p > 1, the sequence does not contain a full residue system modulo p. For n >= 4, all differences a(n) - a(n-1) are multiples of 6; otherwise said, a(n) == 5 (mod 6).

%C Conjecture: The sequence contains infinitely many "twins" with a(n)-a(n-1) = 6.

%C All terms greater than 3 are 2 mod 3, so the sequence does not contain a complete residue system mod 3; all terms are not 4 mod 5, so the sequence does not contain a complete residue system mod 5; since 7 is absent in the sequence, there is not a complete residue system mod 7.

%C By the Chinese remainder theorem and Dirichlet's theorem on arithmetic progressions, the sequence is infinite. - _Dimiter Skordev_, Apr 05 2022

%H Dimiter Skordev, <a href="/A211204/b211204.txt">Table of n, a(n) for n = 1..1000</a> (first 92 terms from Vladimir Shevelev and Peter J. C. Moses)

%o (Python)

%o def isPrime(n):

%o if (n%2==0): return n==2

%o for i in range(3,int(n**0.5+1),2):

%o if (n%i==0): return False

%o return n>1

%o def nextPrime(n):

%o n=n+1

%o while not isPrime(n): n=n+1

%o return n

%o def a(n):

%o p,L,S=2,[],[]

%o while len(L)<n-1:

%o p,S1,i=nextPrime(p),S,0

%o while (i<len(L)) and ((len(S[i])+2<L[i]) or (p%L[i] in S[i])):

%o S1[i].add(p%L[i])

%o i=i+1

%o if i==len(L):

%o S1.append(set(L))

%o S=S1

%o L.append(p)

%o return p

%o # _Dimiter Skordev_, Apr 05 2022

%Y Cf. A210537.

%K nonn

%O 1,1

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Feb 04 2013

%E Edited by _M. F. Hasler_, Feb 13 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)