
COMMENTS

Observations:
For all n in this sequence to n = 24, then y = Lambda_n/n follows form: y = (x^2 + x^k)  (floor[z^2/4]) or y = (x^2 + x^k) + (floor[z^2/4]); k = 1 or 2 and z = 0, 1, 3, 6 or 7. y (= A222786) gives the average number of spheres/dimension of the laminated lattice Kissing numbers in A222785.
e.g. Where T_x is the xth triangular number = (1/2*(x^2 + x)), 2*T_x is the xth pronic number = (x^2 + x) = floor[(2*x + 1)^2/4], and S_x is the xth square = (x^2) = floor[(2*x)^2/4]:
For k = 1, z = 0 or 1, then n = {1, 4, 6, 8, 15, 20, 24}, x = {1, 2, 3, 5, 12, 29, 90}, and y = 2*T_x = {2, 6, 12, 30, 156, 870, 8190}.
For k = 2, z = 0 or 1, then n = {1, 5, 7, 23}, x = {1, 2, 3, 45}, and y = 2*T_x + 2*T_(x) = 2*S_x = {2, 8, 18, 4050}.
For k = 1, z = 3, then n = {3, 7, 12, 16}, x = {2, 4, 7, 16}, and y = 2*T_x  2*T_1 = {4, 18, 54, 270}.
For k = 1, z = 6, then n = {2, 18}, x = {3, 20}, and y = 2*T_x  S_3 = {3, 411}.
For k = 1, z = 7, then n = {5, 7, 8, 21}, x = {4, 5, 6, 36}, and y = 2*T_x  2*T_3 = {8, 18, 30, 1320}.
For k = 1, z = 7, then n = {6, 7, 12, 22}, x = {0, 2, 6, 47}, and y = 2*T_x + 2*T_3 = {12, 18, 54, 2268}.
For the special case where k = 1 and z = 0 or 1, then all associated x values follow form (A216162(n)  A216162(n  2)) [type 1] or (A216162(n)  A216162(n  1)) [type II] for some n in N. Type II x values = {1, 2, 5, 90} (= A215797(n+1)) are associated with the positive RamanujanNagell triangular numbers = {1, 3, 15, 4095} (= A076046(n+1)) by the formula 1/2*(x^2 + x) = T_x.
