login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211197 Table T(n,k) = 2*n + ((-1)^n)*(1/2 - (k-1) mod 2) - 1/2; n, k > 0, read by antidiagonals. 1
1, 2, 4, 1, 3, 5, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In general, let B and C be sequences. By b(n) and c(n) denote elements B and C respectively. Table T(n,k) = (1-(-1)^k)*b(n)/2+(1+(-1)^k)*c(n)/2 read by antidiagonals.

For this sequence b(n)=2*n-1, b(n)=A005408(n), c(n)=2*n, c(n)=A005843(n).

If n is odd   row T(n,k) is alternation b(n) and c(n) starts from b(n).

If n is even  row T(n,k) is alternation c(n) and b(n) starts from c(n).

For this sequence if n is odd   alternation numbers  2*n-1 and 2*n   starts from  2*n-1.

For this sequence if n is even  alternation numbers  2*n   and 2*n-1 starts from  2*n.

T(n,k) is replication of the first and the second columns that are “a braid” from sequences B and C.

LINKS

Boris Putievskiy, Rows n = 1..140 of triangle, flattened

Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO]

FORMULA

For the general case:

As table T(n,k) = (1-(-1)^k)*b(n)/2+(1+(-1)^k)*c(n)/2.

As linear sequence

a(n) = (1-(-1)^j)*b(i)/2+(1+(-1)^j)*c(i)/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

For b(n) = 2*n-1 and c(n) = 2*n:

As table T(n,k) = 2*n+((-1)^n)*(1/2- (k-1) mod 2) - 1/2.

As linear sequence

a(n) = 2*A002260(n) + ((-1)^A002260(n))*(1/2- (A004736(n)-1) mod 2) -1/2.

a(n) = -(1+(-1)^A003056(n))*A002260(n) +(1+(-1)^A003056(n))*(2*A002260(n)-1)/2.

a(n) =  2*i+((-1)^i)*(1/2- (j-1) mod 2) - 1/2, a(n) = -(1+(-1)^t)*i +(1+(-1)^t)*(2*i-1)/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

EXAMPLE

The start of the sequence as table for general case:

b(1)..c(1)..b(1)..c(1)..b(1)..c(1)..b(1)..c(1)..

c(2)..b(2)..c(2)..b(2)..c(2)..b(2)..c(2)..b(2)..

b(3)..c(3)..b(3)..c(3)..b(3)..c(3)..b(3)..c(3)..

c(4)..b(4)..c(4)..b(4)..c(4)..b(4)..c(4)..b(4)..

b(5)..c(5)..b(5)..c(5)..b(5)..c(5)..b(5)..c(5)..

c(6)..b(6)..c(6)..b(6)..c(6)..b(6)..c(6)..b(6)..

b(7)..c(7)..b(7)..c(7)..b(7)..c(7)..b(7)..c(7)..

c(8)..b(8)..c(8)..b(8)..c(8)..b(8)..c(8)..b(8)..

. . .

The start of the sequence as triangle array read by rows for general case:

b(1);

c(1),c(2);

b(1),b(2),b(3);

c(1),c(2),c(3),c(4);

b(1),b(2),b(3),b(4),b(5);

c(1),c(2),c(3),c(4),c(5),c(6);

b(1),b(2),b(3),b(4),b(5),b(6),b(7);

c(1),c(2),c(3),c(4),c(5),c(6),c(7),c(8);

. . .

Row number r contains r numbers.

If r is odd  b(1),b(2),...,b(r).

If r is even c(1),c(2),...,c(r).

The start of the sequence as table for b(n)=2*n-1 and c(n)=2*n:

1....2...1...2...1...2...1...2...

4....3...4...3...4...3...4...3...

5....6...5...6...5...6...5...6...

8....7...8...7...8...7...8...7...

9...10...9..10...9..10...9..10...

12..11..12..11..12..11..12..11...

13..14..13..14..13..14..13..14...

16..15..16..15..16..15..16..15...

. . .

The start of the sequence as triangle array read by rows for  b(n)=2*n-1 and c(n)=2*n:

1;

2,4;

1,3,5;

2,4,6,8;

1,3,5,7,9;

2,4,6,8,10,12;

1,3,5,7,9,11,13;

2,4,6,8,10,12,14,16;

. . .

Row number r contains r numbers.

If r is odd  1,3,...2*r-1 - coincides with the elements row number r triangle array read by rows for sequence 2*A002260-1.

If r is even 2,4,...,2*r  - coincides with the elements row number r triangle array read by rows for sequence 2*A002260.

PROG

(Python)

t=int((math.sqrt(8*n-7) - 1)/ 2)

i=n-t*(t+1)/2

j=(t*t+3*t+4)/2-n

result =2*i+((-1)**i)*(0.5 - (j-1) % 2) - 0.5

CROSSREFS

Cf. A000027, A003056, A002260, A004736, A210530, A158405, A005408, A005843.

Sequence in context: A141843 A130266 A261595 * A258246 A258240 A198578

Adjacent sequences:  A211194 A211195 A211196 * A211198 A211199 A211200

KEYWORD

nonn,tabl

AUTHOR

Boris Putievskiy, Feb 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 06:51 EDT 2018. Contains 315273 sequences. (Running on oeis4.)