OFFSET
0,5
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Alois P. Heinz, Plot of A000081(8) = 115 = 77 + 38 functions with 8 x's
Wikipedia, Zero to the power of zero
FORMULA
From Alois P. Heinz, Mar 01 2019: (Start)
a(n) is even <=> n in { A258592 }.
a(n) is odd <=> n in { A263831 }. (End)
EXAMPLE
There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)). Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Three functions evaluate to 1 at x=0: ((0^0)^0)^0 = (1^0)^0 = 1^0 = 1, (0^0)^(0^0) = 1^1 = 1, 0^(0^(0^0)) = 0^(0^1) = 0^0 = 1. Thus a(4) = 3-1 = 2.
MAPLE
g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
end:
a:= n-> (f-> f[1]-f[2])(g(n-1$2)):
seq(a(n), n=0..40);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, {0, 1}, If[i<1, {0, 0}, ({#[[1]]-#[[2]], #[[2]]}&)[Sum[Function[{l, h}, {(h[[1]]+h[[2]])*Binomial[j+l[[1]]+l[[2]] -1, j], h[[2]]*Binomial[j+l[[1]]-1, j]}][g[i-1, i-1]], g[n-i*j, i-1]]], {j, 0, Quotient[n, i]}]];
a[n_] := (#[[1]]-#[[2]]&)[g[n-1, n-1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
CROSSREFS
KEYWORD
sign
AUTHOR
Alois P. Heinz, Feb 18 2013
STATUS
approved