login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211168 Exponent of alternating group An. 1

%I

%S 1,1,3,6,30,60,420,420,1260,2520,27720,27720,360360,360360,360360,

%T 360360,6126120,12252240,232792560,232792560,232792560,232792560,

%U 5354228880,5354228880,26771144400,26771144400,80313433200,80313433200,2329089562800,2329089562800

%N Exponent of alternating group An.

%C a(n) is the smallest natural number m such that g^m = 1 for any g in An.

%C If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.

%H Alexander Gruber, <a href="/A211168/b211168.txt">Table of n, a(n) for n = 1..2308</a>

%F Explicit:

%F a(n) = lcm{1,..., n-1} if n is even.

%F = lcm{1,..., n-2, n} if n is odd.

%F Recursive:

%F Let a(1) = a(2) = 1 and a(3) = 3. Then

%F a(n) = lcm{a(n-1), n-2} if n is even.

%F = lcm{a(n-2), n-3, n} if n is odd.

%F a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - _Charlie Neder_, Apr 25 2019

%e For n = 7, lcm{1,...,5,7} = 420.

%t Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],

%t LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)

%t a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =

%t If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]

%o (MAGMA)

%o for n in [1..40] do

%o Exponent(AlternatingGroup(n));

%o end for;

%o (MAGMA)

%o for n in [1..40] do

%o if n mod 2 eq 0 then

%o L := [1..n-1];

%o else

%o L := Append([1..n-2],n);

%o end if;

%o LCM(L);

%o end for;

%o (PARI) a(n)=lcm(if(n%2,concat([2..n-2],n),[2..n-1])) \\ _Charles R Greathouse IV_, Mar 02 2014

%Y Even entries given by the sequence A076100, or the odd entries in the sequence A003418.

%Y The records of this sequence are a subsequence of A002809 and A126098.

%K nonn,nice

%O 1,3

%A _Alexander Gruber_, Jan 31 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)