login
A211167
Neither a cube nor the sum of a prime and a positive cube.
5
2, 5, 7, 9, 16, 17, 22, 23, 26, 28, 33, 35, 36, 41, 43, 47, 52, 53, 57, 59, 63, 65, 73, 76, 78, 82, 85, 89, 92, 96, 99, 103, 112, 113, 118, 119, 120, 122, 126, 129, 133, 141, 146, 149, 151, 155, 160, 163, 169, 170, 179, 183, 185, 188, 193, 197
OFFSET
1,1
COMMENTS
Hardy & Littlewood's conjecture that this sequence is finite (Conjecture L, p. 51).
Up to 4*10^9 there are 7050 such numbers, the last one being 78526384. - Giovanni Resta, Feb 20 2013
LINKS
G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
PROG
(PARI) is(n)=if(ispower(n, 3), return(0)); for(k=1, n^(1/3), if(isprime(n-k^3), return(0))); 1
CROSSREFS
Cf. A045911.
Sequence in context: A093417 A286162 A286164 * A083272 A115906 A192279
KEYWORD
nonn
AUTHOR
STATUS
approved