login
A211159
Number of integer pairs (x,y) such that 0<x<y<=n and x*y=n+1.
14
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 2, 1, 3, 0, 2, 1, 3, 0, 5, 0, 1, 2, 2, 1, 3, 0, 4, 1, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 2, 1, 1, 1, 5, 0, 2, 2, 3
OFFSET
1,11
COMMENTS
For a guide to related sequences, see A211266.
LINKS
FORMULA
a(n) = (A000005(1+n) - A010052(1+n) - 2)/2 = A200213(1+n)/2. - Antti Karttunen, Jul 07 2017
EXAMPLE
a(11) counts these pairs: (2,6), (3,4).
MATHEMATICA
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A056924 *)
Table[c[n, n + 1], {n, 1, z1}] (* A211159 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211261 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211262 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *)
Print
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Table[c1[n, n], {n, 1, z1}] (* A211264 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
PROG
(PARI) A211159(n) = (numdiv(1+n)-issquare(1+n)-2)/2; \\ Antti Karttunen, Jul 07 2017
(Scheme) (define (A211159 n) (/ (- (A000005 (+ 1 n)) (A010052 (+ 1 n)) 2) 2)) ;; Antti Karttunen, Jul 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 06 2012
STATUS
approved