This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211159 Number of integer pairs (x,y) such that 0
 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 2, 1, 3, 0, 2, 1, 3, 0, 5, 0, 1, 2, 2, 1, 3, 0, 4, 1, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 2, 1, 1, 1, 5, 0, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS For a guide to related sequences, see A211266. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = (A000005(1+n) - A010052(1+n) - 2)/2 = A200213(1+n)/2. - Antti Karttunen, Jul 07 2017 EXAMPLE a(11) counts these pairs: (2,6), (3,4). MATHEMATICA a = 1; b = n; z1 = 120; t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, n], {n, 1, z1}]           (* A056924 *) Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *) Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *) Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *) Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *) Print c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}] Table[c1[n, n], {n, 1, z1}]          (* A211264 *) Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *) Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *) Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *) Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *) Cf. A211266. PROG (PARI) A211159(n) = (numdiv(1+n)-issquare(1+n)-2)/2; \\ Antti Karttunen, Jul 07 2017 (Scheme) (define (A211159 n) (/ (- (A000005 (+ 1 n)) (A010052 (+ 1 n)) 2) 2)) ;; Antti Karttunen, Jul 07 2017 CROSSREFS Cf. A000005, A010052, A200213. Sequence in context: A084114 A110475 A086971 * A088434 A205745 A243223 Adjacent sequences:  A211156 A211157 A211158 * A211160 A211161 A211162 KEYWORD nonn AUTHOR Clark Kimberling, Apr 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.