OFFSET
1,2
COMMENTS
Each part of a partition of n belongs to a different region of n. The "region number" of a part of the r-th region of n is equal to r. For the definition of "region of n" see A206437.
LINKS
EXAMPLE
For n = 5 we have:
------------------------------------------------------
. Two arrangements Sum of
k of the partitions of 5 partition k
------------------------------------------------------
7 [5] [5] 5
6 [3+2] [3+2] 5
5 [4+1] [4 +1] 5
4 [2+1+1] [2+2 +1] 5
3 [3+1+1] [3 +1 +1] 5
2 [2+1+1+1] [2+1 +1 +1] 5
1 [1+1+1+1+1] [1+1+1 +1 +1] 5
------------------------------------------------------
. Two arrangements
. of the region numbers Sum of
k of the partitions of 5 zone k
------------------------------------------------------
7 [7] [7] 7
6 [6,7] [6,7] 13
5 [5,7] [5, 7] 12
4 [4,5,7] [4,5, 7] 16
3 [3,5,7] [3, 5, 7] 15
2 [2,3,5,7] [2,3, 5, 7] 17
1 [1,2,3,5,7] [1,2,3, 5, 7] 18
------------------------------------------------------
So row 5 of triangle gives: 18, 17, 15, 16, 12, 13, 7.
.
Triangle begins:
1;
3,2;
6,5,3;
11,10,8,9,5;
18,17,15,16,12,13,7;
29,28,26,27,23,24,18,28,20,21,11;
CROSSREFS
KEYWORD
nonn,tabf,more
AUTHOR
Omar E. Pol, Jun 30 2012
STATUS
approved