%I #12 Jan 19 2019 04:14:58
%S 2,2,3,2,2,5,2,2,7,3,3,7,2,2,11,2,2,13,3,3,13,2,2,17,2,2,19,3,3,19,2,
%T 2,23,3,3,23,3,5,23,2,2,29,2,2,31,3,3,31,3,5,31,2,2,37,3,3,37,2,2,41,
%U 2,2,43,3,3,43,2,2,47,3,3,47,3,5,47,2,2,53,3,3,53,3,5,53,2,2,59,2,2,61,3,3,61,3,5,61,2,2,67,3,3,67,2,2,71,2,2,73,3,3,73
%N Prime triples (p, q, r), p<=q<=r, such that p + q + r = 2*n + 1 and p*q*r is the minimum product.
%e ----------------------------------
%e p+q+r
%e Triplets = A210968
%e n (p, q, r) 2*n+1 p*q*r
%e ----------------------------------
%e 3 (2, 2, 3) 7 12
%e 4 (2, 2, 5) 9 20
%e 5 (2, 2, 7) 11 28
%e 6 (3, 3, 7) 13 63
%Y Cf. A005408, A210968.
%K nonn
%O 3,1
%A _Omar E. Pol_, Jun 29 2012