login
Sum of all region numbers of all parts of the n-th region of the shell model of partitions.
2

%I #13 Mar 11 2014 01:34:20

%S 1,4,9,4,25,6,49,8,18,10,121,12,26,14,225,16,34,18,76,20,21,484,23,48,

%T 25,104,27,56,29,900,31,64,33,136,35,36,259,38,78,40,41,1764,43,88,45,

%U 184,47,96,49,400,51,52,159,54,55,3136,57,116,59,240

%N Sum of all region numbers of all parts of the n-th region of the shell model of partitions.

%C Each part of a partition of n belongs to a different region of n. The "region number" of a part of the r-th region of n is equal to r. For the definition of "region of n" see A206437.

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>

%F a(n) = n*A194446(n).

%e The first seven regions of the shell model of partitions (or the seven regions of 5) are [1], [2, 1], [3, 1, 1], [2], [4, 2, 1, 1, 1], [3], [5, 2, 1, 1, 1, 1, 1] therefore the "region numbers" are [1], [2, 2], [3, 3, 3], [4], [5, 5, 5, 5, 5], [6], [7, 7, 7, 7, 7, 7, 7]. So a(1)..a(7) give: 1, 4, 9, 4, 25, 6, 49.

%e Also written as an irregular triangle the sequence begins:

%e 1;

%e 4;

%e 9;

%e 4,25;

%e 6,49;

%e 8,18,10,121;

%e 12,26,14,225;

%e 16,34,18,76,20,21,484;

%e 23,48,25,104,27,56,29,900;

%e 31,64,33,136,35,36,259,38,78,40,41,1764;

%e 43,88,45,184,47,96,49,400,51,52,159,54,55,3136;

%Y Row n has length A187219(n). Row sums give A210969. Right border gives A001255, n >= 1.

%Y Cf. A135010, A138121, A194446, A182703, A206437, A210971, A210972.

%K nonn,tabf

%O 1,2

%A _Omar E. Pol_, Jul 01 2012