%I
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,3,1,4,1,1,4,1,1,4,1,1,4,1,1,4,1,1,4,
%T 1,1,4,1,1,4,1,1,4,2,1,5,3,1,7,4,1,10,4,2,12,4,3,13,4,4,13,4,
%U 4,13,4,4,13,4,4,13,4,4,13,4,4,13,5,4,14,7,4,1
%N Triangle read by rows which arises from A210944 in the same way as A175003 arises from A195310. Column k starts at row A195818(k).
%C The sum of terms of row n is equal to the leftmost term of row n+1. Also 1 together with the row sums give A210964. This sequence is related to the generalized 14gonal numbers A195818, A210954 and A210964 in the same way as A175003 is related to the generalized pentagonal numbers A001318, A195310 and A000041. See comments in A195825.
%e Written as an irregular triangle:
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1;
%e 1, 1;
%e 2, 1;
%e 3, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 1, 1;
%e 4, 2, 1;
%e 5, 3, 1;
%e 7, 4, 1;
%e 10, 4, 2;
%e 12, 4, 3;
%e 13, 4, 4;
%e 13, 4, 4;
%e 13, 4, 4;
%e 13, 4, 4;
%e 13, 4, 4;
%e 13, 4, 4;
%e 13, 5, 4;
%e 14, 7, 4, 1;
%Y Cf. A175003, A195818, A195825, A195836, A195837, A195838, A195839, A195840, A195841, A195842, A195843, A210944, A210964.
%K sign,tabf
%O 1,13
%A _Omar E. Pol_, Jun 16 2012
