This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210879 Triangle of coefficients of polynomials v(n,x) jointly generated with A210878; see the Formula section. 3
 1, 2, 2, 1, 5, 5, 1, 5, 16, 12, 1, 3, 21, 47, 29, 1, 3, 17, 79, 134, 70, 1, 3, 13, 79, 273, 373, 169, 1, 3, 13, 63, 333, 893, 1020, 408, 1, 3, 13, 55, 297, 1291, 2805, 2751, 985, 1, 3, 13, 55, 249, 1323, 4701, 8543, 7338, 2378, 1, 3, 13, 55, 233, 1147, 5525 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Leading coefficient of v(n,x):  A000129 Alternating row sums:  1,0,1,0,1,0,1,0,1,0,... Limiting row:  1,3,13,55,233,987...( Fibonacci numbers) For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+2x*v(n-1,x), v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First six rows: 1 2...2 1...5...5 1...5...16...12 1...3...21...47....29 1...3...17...79...134...70 First three polynomials v(n,x): 1, 2 + 2x, 1 + 5x + 5x^2 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210878 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210879 *) CROSSREFS Cf. A210878, A208510. Sequence in context: A079218 A079220 A158068 * A176265 A187307 A280785 Adjacent sequences:  A210876 A210877 A210878 * A210880 A210881 A210882 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 19:52 EDT 2019. Contains 327981 sequences. (Running on oeis4.)