login
Triangle of coefficients of polynomials v(n,x) jointly generated with A210866; see the Formula section.
4

%I #5 Mar 31 2012 20:30:51

%S 1,2,1,3,5,2,4,15,12,3,5,34,51,28,5,6,65,170,156,60,8,7,111,465,680,

%T 438,126,13,8,175,1092,2465,2411,1145,255,21,9,260,2282,7623,10968,

%U 7805,2854,506,34,10,369,4356,20608,42735,43440,23509,6813,984,55

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A210866; see the Formula section.

%C For n>1, row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers).

%C For a discussion and guide to related arrays, see A208510.

%F u(n,x)=u(n-1,x)+x*v(n-1,x),

%F v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x)-x,

%F where u(1,x)=1, v(1,x)=1.

%e First five rows:

%e 1

%e 2...1

%e 3...5....2

%e 4...15...12...3

%e 5...34...51...28...5

%e First three polynomials v(n,x): 1, 2 + x, 3 + 5x + 2x^2

%t u[1, x_] := 1; v[1, x_] := 1; z = 14;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x] - x;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A210866 *)

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A210867 *)

%Y Cf. A210866, A208510.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Mar 29 2012