The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210804 Triangle of coefficients of polynomials v(n,x) jointly generated with A210803; see the Formula section. 3
 1, 2, 2, 5, 8, 3, 14, 27, 18, 5, 41, 88, 79, 40, 8, 122, 284, 310, 215, 80, 13, 365, 912, 1152, 980, 510, 156, 21, 1094, 2917, 4144, 4091, 2660, 1150, 294, 34, 3281, 9296, 14578, 16176, 12393, 6752, 2461, 544, 55, 9842, 29526, 50436, 61638, 53730 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row n ends with F(n), where F=A000045 (Fibonacci numbers). Column 1:  A007051. Row sums:  A000302 (powers of 4). Alternating row sums:  1,0,0,0,0,0,0,0,0,... For a discussion and guide to related arrays, see A208510. Essentially the same triangle as given by (2, 1/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham Jul 11 2012 LINKS FORMULA u(n,x) = u(n-1,x) + x*v(n-1,x) + 1, v(n,x) = (x-1)*u(n-1,x) + (x+3)*v(n-1,x), where u(1,x)=1, v(1,x)=1. T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-2,k-2), T(1,0) = 1, T(2,0) = T(2,1) = 2, T(3,0) = 5, T(3,1) = 8, T(3,2) = 3, T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Jul 11 2012 G.f.: (-1+2*x-x*y)*x*y/(-1+4*x+x*y-3*x^2-2*x^2*y+x^2*y^2). - R. J. Mathar, Aug 12 2015 EXAMPLE First five rows:    1;    2,  2;    5,  8,  3;   14, 27, 18,  5;   41, 88, 79, 40,  8; First three polynomials v(n,x):   1   2 + 2x   5 + 8x + 3x^2 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 0; h = -1; p = 3; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210803 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210804 *) Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A047849 *) Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A000302 *) Table[u[n, x] /. x -> -1, {n, 1, z}]  (* A000007 *) Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A000007 *) CROSSREFS Cf. A210803, A208510. Sequence in context: A210637 A201972 A202396 * A087910 A327597 A284325 Adjacent sequences:  A210801 A210802 A210803 * A210805 A210806 A210807 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 23:47 EST 2020. Contains 338685 sequences. (Running on oeis4.)