This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210796 Triangle of coefficients of polynomials v(n,x) jointly generated with A210795; see the Formula section. 3
 1, 1, 2, 3, 3, 3, 3, 7, 6, 5, 5, 10, 16, 12, 8, 5, 16, 26, 34, 23, 13, 7, 21, 47, 64, 70, 43, 21, 7, 29, 68, 123, 147, 140, 79, 34, 9, 36, 104, 200, 304, 324, 274, 143, 55, 9, 46, 140, 324, 538, 714, 690, 527, 256, 89, 11, 55, 195, 480, 932, 1366, 1616, 1431 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row n starts with A109613(n) and ends with F(n+1), where F=A000045 (Fibonacci numbers). Column 2: A114113 For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=u(n-1,x)+x*v(n-1,x)+1, v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x), where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 1...2 3...3....3 3...7....6....5 5...10...16...12...8 First three polynomials v(n,x): 1, 1 + 2x, 3 + 3x + 3x^2 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 0; c = 1; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]   (* A210795 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]   (* A210796 *) CROSSREFS Cf. A210795, A208510. Sequence in context: A227246 A200924 A111913 * A305419 A075757 A096420 Adjacent sequences:  A210793 A210794 A210795 * A210797 A210798 A210799 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)