login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210791 Triangle of coefficients of polynomials u(n,x) jointly generated with A210792; see the Formula section. 3
1, 1, 1, 1, 2, 2, 1, 3, 7, 3, 1, 4, 17, 14, 5, 1, 5, 36, 42, 30, 8, 1, 6, 72, 104, 111, 58, 13, 1, 7, 141, 233, 329, 251, 111, 21, 1, 8, 275, 494, 862, 848, 553, 206, 34, 1, 9, 538, 1016, 2097, 2479, 2112, 1158, 377, 55, 1, 10, 1058, 2056, 4870, 6608, 6875 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers).

Column 2: 1,2,3,4,5,6,7,8,...

Row sums: A007051.

Alternating row sums: A000129.

For a discussion and guide to related arrays, see A208510.

Subtriangle of the triangle given by (1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 29 2012

LINKS

Table of n, a(n) for n=1..62.

FORMULA

u(n,x) = u(n-1,x) + x*v(n-1,x),

v(n,x) = (x-1)*u(n-1,x) + (x+2)*v(n-1,x),

where u(1,x)=1, v(1,x)=1.

From Philippe Deléham, Mar 29 2012: (Start)

As DELTA-triangle T(n,k) with 0 <= k <= n:

G.f.: (1 - 2*x - y*x + 2*y*x^2 - y^2*x^2)/(1 - 3*x - y*x + 2*x^2 + 2*y*x^2 - y^2*x^2).

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

EXAMPLE

First five rows:

  1;

  1,  1;

  1,  2,  2;

  1,  3,  7,  3;

  1,  4, 17, 14,  5;

First three polynomials u(n,x):

  1

  1 + x

  1 + 2x + 2x^2.

From Philippe Deléham, Mar 29 2012: (Start)

(1, 0, 0, 2, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins:

  1;

  1,   0;

  1,   1,   0;

  1,   2,   2,   0;

  1,   3,   7,   3,   0;

  1,   4,  17,  14,   5,   0;

  1,   5,  36,  42,  30,   8,   0;

  1,   6,  72, 104, 111,  58,  13,   0; (End)

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;

d[x_] := h + x; e[x_] := p + x;

v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;

j = 0; c = 0; h = -1; p = 2; f = 0;

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]    (* A210791 *)

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]    (* A210792 *)

Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A007051 *)

Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000244 *)

Table[u[n, x] /. x -> -1, {n, 1, z}] (* A001129 *)

Table[v[n, x] /. x -> -1, {n, 1, z}] (* A001333 *)

CROSSREFS

Cf. A210792, A208510.

Sequence in context: A158497 A334894 A110564 * A299500 A330141 A007441

Adjacent sequences:  A210788 A210789 A210790 * A210792 A210793 A210794

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Mar 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 18:29 EST 2020. Contains 338936 sequences. (Running on oeis4.)