

A210767


Numbers whose digit sum as well as sum of the 4th powers of the digits is a prime.


1



11, 12, 14, 16, 21, 23, 25, 29, 32, 34, 38, 41, 43, 47, 52, 58, 61, 67, 74, 76, 83, 85, 89, 92, 98, 101, 102, 104, 106, 110, 111, 113, 119, 120, 131, 133, 140, 146, 160, 164, 166, 179, 191, 197, 201, 203, 205, 209, 210, 223, 230, 232, 250, 269, 290, 296, 302
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This is to the exponent 4 as A182404 is to the exponent 2.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


FORMULA

{n such that A055013(n) and A007953(n) are both primes}.


EXAMPLE

21 is in the sequence because sum of digits 2+1= 3 is prime, and sum of the 4th powers of the digits 2^4+1^4=17 is a prime.


MATHEMATICA

Select[Range[350], AllTrue[{Total[IntegerDigits[#]], Total[ IntegerDigits[ #]^4]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 01 2019 *)


PROG

(PARI) dspow(n, b, k)=my(s); while(n, s+=(n%b)^k; n\=b); s
select(n>isprime(sumdigits(n))&&isprime(dspow(n, 10, 4)), vector(10^3, i, i)) \\ Charles R Greathouse IV, May 11 2012


CROSSREFS

Cf. A007953, A055013, A182404.
Sequence in context: A332379 A140353 A108662 * A182404 A234021 A264023
Adjacent sequences: A210764 A210765 A210766 * A210768 A210769 A210770


KEYWORD

nonn,base,easy


AUTHOR

Jonathan Vos Post, May 10 2012


STATUS

approved



