login
A210750
Triangle of coefficients of polynomials v(n,x) jointly generated with A210749; see the Formula section.
3
1, 2, 3, 4, 8, 7, 7, 21, 24, 15, 12, 46, 78, 64, 31, 20, 96, 205, 247, 160, 63, 33, 190, 501, 756, 712, 384, 127, 54, 365, 1140, 2109, 2483, 1929, 896, 255, 88, 684, 2480, 5404, 7764, 7538, 5002, 2048, 511, 143, 1259, 5199, 13083, 22070, 26058
OFFSET
1,2
COMMENTS
Row n starts with -1+F(n+2) and ends with -1+2^n, where F=A000045 (Fibonacci numbers).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....3
4....8....7
7....21...24...15
12...46...78...64...31
First three polynomials v(n,x): 1, 2 + 3x, 4 + 8x +7x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210749 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210750 *)
CROSSREFS
Sequence in context: A332778 A263694 A210743 * A036712 A036706 A336785
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 25 2012
STATUS
approved