OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
FORMULA
From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 - 2*x + 4*x^2 - 2*x^3)/((1 - x)^2*(1 - x - x^2)). (End)
E.g.f.: exp(x/2)*(25*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x)*(4 + x). - Stefano Spezia, Feb 24 2023
MATHEMATICA
LinearRecurrence[{3, -2, -1, 1}, {1, 1, 5, 10}, 39] (* Jean-François Alcover, Oct 05 2017 *)
CROSSREFS
Cf. A081659: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=1 (except first 2 terms and sign).
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=1 (except first 4 terms).
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-2, a(0)=a(1)=1 (except first term).
Cf. A066982: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=1.
Cf. A030119: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=1.
Cf. A210678: a(n)=a(n-1)+a(n-2)+n+2, a(0)=a(1)=1.
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 09 2012
STATUS
approved