

A210649


Decimal expansion of cos(Pi/17).


5



9, 8, 2, 9, 7, 3, 0, 9, 9, 6, 8, 3, 9, 0, 1, 7, 7, 8, 2, 8, 1, 9, 4, 8, 8, 4, 4, 8, 5, 5, 1, 9, 8, 7, 1, 6, 0, 9, 8, 7, 2, 2, 8, 7, 5, 0, 6, 5, 6, 3, 2, 8, 7, 5, 9, 9, 7, 3, 8, 0, 4, 5, 9, 2, 0, 3, 9, 0, 7, 8, 5, 2, 5, 5, 2, 2, 4, 4, 2, 1, 7, 4, 2, 9, 6, 8, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This algebraic number is related to the constructibility of the regular heptadecagon (see also A210644), it is a root of the polynomial 256*x^8128*x^7448*x^6+192*x^5+240*x^480*x^340*x^2+8*x+1.
The continued fraction expansion of cos(Pi/17) is 0, 1, 57, 1, 2, 1, 2, 2, 8, 9, 2, 3, 1, 1, 1, 1, 1, 2, 2, 13, 5, 1, 7, 84, 1, 1, 1,...
Expressed in terms of radicals, cos(Pi/17) is (1/8)*sqrt(2*(2*sqrt(sqrt((17/2)*(17sqrt(17)))  sqrt((1/2)*(17sqrt(17)))  4*sqrt(2*(17+sqrt(17))) + 3*sqrt(17) + 17) + sqrt(17) + sqrt(2*(17sqrt(17))) + 15)).  JeanFrançois Alcover, Dec 21 2012


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Heptadecagon.


EXAMPLE

cos(Pi/17) = 0.9829730996839017782819488448551987160987228750656328...


MATHEMATICA

RealDigits[Cos[Pi/17], 10, 87][[1]]


PROG

(PARI) cos(Pi/17)
(Maxima) fpprec:90; ev(bfloat(cos(%pi/17)));


CROSSREFS

Cf. A019684, A210644.
Sequence in context: A157258 A155115 A139342 * A144666 A255251 A224236
Adjacent sequences: A210646 A210647 A210648 * A210650 A210651 A210652


KEYWORD

nonn,cons


AUTHOR

Bruno Berselli, Mar 27 2012


STATUS

approved



