login
A210623
Decimal expansion of (11111111/10^8)^(1/4).
1
5, 7, 7, 3, 5, 0, 2, 6, 7, 7, 4, 6, 2, 5, 0, 0, 8, 6, 1, 2, 2, 4, 2, 5, 5, 6, 4, 0, 0, 2, 5, 0, 0, 8, 9, 8, 7, 4, 1, 6, 0, 8, 1, 0, 1, 9, 5, 9, 7, 5, 7, 1, 6, 4, 5, 8, 1, 8, 7, 1, 0, 6, 4, 6, 3, 4, 0, 5, 1, 1, 6, 7, 1, 0, 4, 7, 2, 2, 3, 0, 2, 8, 1, 5, 9, 2, 1, 9, 3, 8, 1, 3, 9, 6, 1, 7, 8, 0, 9
OFFSET
0,1
COMMENTS
An approximation to A001620.
A good lower bound for A001620 which maintains the ((10^k-1)/9/10^k)^(1/4) form is (111/1000)^(1/4) = 0.57720587746414... . - A.H.M. Smeets, Nov 15 2018
LINKS
Dario Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163.
EXAMPLE
.57735026774625008612242556400250089874160810195975716458187...
MATHEMATICA
RealDigits[(11111111 / 10^8)^(1/4), 10, 100][[1]] (* Vincenzo Librandi, Jul 24 2017 *)
PROG
(PARI) sqrtn(.11111111, 4) \\ Charles R Greathouse IV, Mar 25 2014
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (11111111/10^8)^(1/4); // G. C. Greubel, Sep 04 2018
CROSSREFS
Cf. A001620.
Sequence in context: A117034 A021638 A258408 * A020760 A225155 A011269
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Mar 24 2012
STATUS
approved