OFFSET
1,1
COMMENTS
According to Maor (1994), the Rhind Papyrus asserts that a circle has the same area as a square with a side that is 8/9 the diameter of the circle. From this we can determine that 256/81 is one of the ancient Egyptian approximations of Pi. - Alonso del Arte, Jun 12 2012
REFERENCES
Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 12.
Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 88.
Carl Theodore Heisel, Behold! The grand problem no longer unsolved: The circle squared beyond refutation, c. 1935. (proposes Pi = 3 + 13/81)
Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994): 41, 47 note 1.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 48.
LINKS
Dario Castellanos, The ubiquitous Pi, Math. Mag., 61 (1988), 67-98 and 148-163.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
FORMULA
256/81 = (4/3)^4.
EXAMPLE
3.1604938271604938271604938271604938271604938271604938271604...
MATHEMATICA
RealDigits[256/81, 10, 100][[1]] (* Alonso del Arte, Jun 12 2012 *)
PROG
(PARI) 256/81. \\ Charles R Greathouse IV, Sep 13 2013
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Mar 24 2012
EXTENSIONS
Offset corrected by Rick L. Shepherd, Jan 06 2014
STATUS
approved