This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210597 Triangle of coefficients of polynomials u(n,x) jointly generated with A210602; see the Formula section. 3
 1, 2, 2, 4, 5, 4, 7, 13, 12, 8, 12, 28, 37, 28, 16, 20, 58, 92, 98, 64, 32, 33, 114, 217, 273, 248, 144, 64, 54, 218, 479, 713, 760, 608, 320, 128, 88, 407, 1018, 1727, 2161, 2024, 1456, 704, 256, 143, 747, 2093, 3997, 5662, 6194, 5216, 3424, 1536, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row n starts with F(n+2)-1, where F=A000045 (Fibonacci numbers), and ends with 2^(n-1).  For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=2x*u(n-1,x)+v(n-1,x)+1, v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 2....2 4....5....4 7....13...12...8 12...28...37...28...16 First three polynomials u(n,x): 1, 2+ 2x, 4 + 5x + 4x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210597 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210602 *) CROSSREFS Cf. A210602, A208510. Sequence in context: A202876 A128900 A136099 * A252836 A286101 A072454 Adjacent sequences:  A210594 A210595 A210596 * A210598 A210599 A210600 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 00:15 EDT 2019. Contains 328135 sequences. (Running on oeis4.)