This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210594 "Factor-dense" numbers: integers n where (# of proper divisors of n) / log(n) sets a new record. 1
 2, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let d(n) = the number of proper divisors of n (A032741). Define the "factor density" of n as f(n) = d(n) / log(n). n is "factor dense" if f(m) < f(n) for all integers m where 2 <= m < n. Missing highly-composite numbers (A002182) are 4 and 45360. LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..102 MATHEMATICA f[n_] := N[(DivisorSigma[0, n] - 1)/Log[n]]; mx = 0; lst = {}; Do[ If[ f[n] > mx, mx = f[n]; AppendTo[lst, n]], {n, 2, 4000000, 2}]; t (* T. D. Noe, Mar 23 2012 *) PROG (Python 3) import math def factors(n): .result = {1} .for d in range(2, round(math.sqrt(n)) + 1): ..if n % d == 0: ...result |= {d, n // d} .return result def factor_density(n): .return len(factors(n)) / math.log(n) n = 2 max_fd = -1 while True: .fd = factor_density(n) .if fd > max_fd: ..print(n) ..max_fd = fd .n += 1 CROSSREFS Cf. A189686. Sequence in context: A099993 A011778 A067718 * A307252 A306625 A262986 Adjacent sequences:  A210591 A210592 A210593 * A210595 A210596 A210597 KEYWORD nonn AUTHOR Daniel Bishop, Mar 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 16:38 EDT 2019. Contains 325107 sequences. (Running on oeis4.)