login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210572 Triangle read by rows: T(n,k) = number of vertices of eccentricity k in the Lucas cube graph of order n. 2
1, 1, 0, 0, 1, 2, 0, 1, 3, 0, 0, 0, 1, 4, 2, 0, 0, 1, 5, 5, 0, 0, 0, 0, 1, 9, 6, 2, 0, 0, 0, 1, 7, 14, 7, 0, 0, 0, 0, 0, 1, 16, 20, 8, 2, 0, 0, 0, 0, 1, 9, 30, 27, 9, 0, 0, 0, 0, 0, 0, 1, 25, 50, 35, 10, 2, 0, 0, 0, 0, 0, 1, 11, 55, 77, 44, 11, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The Castro and Mollard reference contains a formula for T(n,k) (Corollary 5.17); it is used in the Maple program given below. - Emeric Deutsch, Aug 06 2014

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

A. Castro and M. Mollard, The eccentricity sequences of Fibonacci and Lucas cubes, Discrete Math., 312 (2012), 1025-1037.

FORMULA

G.f.: (1 + t*z^2)/(1 - t*z - t*z^2) + 1/(1 + t*z) - (1 - z)/(1 - t*z^2). - Emeric Deutsch, Aug 06 2014

EXAMPLE

Row 3 is 0,1,3,0 because the Lucas cube L_3 is the star tree on 4 vertices, having eccentricities 1, 2, 2, 2.

Triangle begins:

1,

1, 0,

0, 1, 2,

0, 1, 3, 0,

0, 0, 1, 4, 2,

0, 0, 1, 5, 5, 0,

0, 0, 0, 1, 9, 6, 2,

0, 0, 0, 1, 7, 14, 7, 0,

0, 0, 0, 0, 1, 16, 20, 8, 2,

0, 0, 0, 0, 1, 9, 30, 27, 9, 0,

...

MAPLE

T := proc (n, k) if n = 0 and k = 0 then 1 elif n = 1 and k = 0 then 1 elif k = 0 then 0 elif `mod`(n, 2) = 0 and k = n then 2 elif `mod`(n, 2) = 1 and k = n then 0 elif n = 2*k then binomial(k, n-k)+binomial(k-1, n-k-1)-1 elif n = 2*k+1 then binomial(k, n-k)+binomial(k-1, n-k-1)+1 else binomial(k, n-k)+binomial(k-1, n-k-1) end if end proc: for m from 0 to 16 do seq(T(m, k), k = 0 .. m) end do;

# yields sequence in triangular form - Emeric Deutsch, Aug 06 2014

MATHEMATICA

T[n_, k_] := Which[n == 0 && k == 0, 1, n == 1 && k == 0, 1, k == 0, 0, EvenQ[n] && k == n, 2, OddQ[n] && k == n, 0, n == 2*k, Binomial[k, n-k] + Binomial[k-1, n-k-1]-1, n == 2*k+1, Binomial[k, n-k] + Binomial[k-1, n-k- 1]+1, True, Binomial[k, n-k] + Binomial[k-1, n-k-1]]; Table[T[m, k], {m, 0, 16}, {k, 0, m}] // Flatten (* Jean-Fran├žois Alcover, Feb 26 2017, after Emeric Deutsch *)

CROSSREFS

Sequence in context: A241857 A300485 A014511 * A085855 A280500 A309576

Adjacent sequences:  A210569 A210570 A210571 * A210573 A210574 A210575

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Mar 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 08:18 EST 2019. Contains 329093 sequences. (Running on oeis4.)