login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210569 a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30. 5
0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):

. A000217(n)   for k=1,

. A007290(n+1) for k=2,

. A050534(n)   for k=3,

. a(n)         for k=4,

. A000910(n+1) for k=5.

Sum of reciprocals of a(n), for n>3: 5/16.

From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 3. - N. J. A. Sloane, Mar 23 2014

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: 4*x^4/(1-x)^6.

a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).

a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.

(n-4)*a(n) = (n+1)*a(n-1).

MAPLE

f:=n->(n^5-5*n^3+4*n)/30;

[seq(f(n), n=0..50)]; # N. J. A. Sloane, Mar 23 2014

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 4, 24}, 39]

CoefficientList[Series[4 x^4/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)

PROG

(MAGMA) [4*Binomial(n+1, 5): n in [0..38]];

(Maxima) makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);

(PARI) a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A000217, A000910, A002378, A007290, A050534, A000389, A177747.

First differences are in A033488.

Sequence in context: A264184 A211071 A212135 * A005561 A061612 A097875

Adjacent sequences:  A210566 A210567 A210568 * A210570 A210571 A210572

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Mar 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)