This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210552 Triangle of coefficients of polynomials u(n,x) jointly generated with A210553; see the Formula section. 3
 1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 10, 8, 1, 6, 9, 16, 18, 13, 1, 7, 11, 23, 31, 33, 21, 1, 8, 13, 31, 47, 62, 59, 34, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 11, 19, 61, 113, 213, 321, 414, 426, 324, 144, 1, 12, 21, 73 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Let T(n,k) denote the term in row n, column k. T(n,n):  A000045 (Fibonacci numbers) T(n,n-1): A010049 (second-order Fibonacci numbers) T(n,1): 1,1,1,1,1,1,1,1,1,1,1,,... T(n,2): 2,3,4,5,6,7,8,9,10,11,... T(n,3): 3,5,7,9,11,13,15,17,19,... T(n,4): A052905 Row sums: A000225 Alternating row sums: A094024 (signed) For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1, v(n,x)=x*u(n-1,x)+v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 1...2 1...3...3 1...4...5...5 1...5...7...10...8 First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 3x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]   (* A210552 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]   (* A210553 *) Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A094024 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A052551 *) CROSSREFS Cf. A210553, A208510. Sequence in context: A132108 A210489 A125175 * A193376 A185095 A177888 Adjacent sequences:  A210549 A210550 A210551 * A210553 A210554 A210555 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)