

A210534


Primes formed by concatenating palindromes having even number of digits with 1.


1



331, 661, 881, 991, 12211, 14411, 15511, 20021, 21121, 23321, 24421, 29921, 33331, 35531, 41141, 45541, 47741, 50051, 51151, 57751, 59951, 63361, 71171, 72271, 74471, 75571, 81181, 84481, 99991, 1022011, 1255211, 1299211, 1311311, 1344311, 1355311
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Analogous to A210511, except that the second n is digit reversed. If the first (leftmost) n were reversed, we would have problems with trailing zeros becoming leading zeros, which get removed in OEIS formatting. That is a slightly different sequence is given by the formula primes of the form n concatenated with A004086(n) concatenated with "1"; or Primes of form a(n) = (n*10^A055642(n)+A004086(n)) concatenated with "1".
There are 190 terms up to all 6digit palindromes (i.e., 7digit primes), 1452 terms up to all 8digit palindromes (i.e., 9digit primes), and 11724 terms up to all 10digit palindromes (i.e., 11digit primes).  Harvey P. Dale, Jul 06 2018


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1452


EXAMPLE

a(18) = 50 concatenated with R(50)=05 concatenated with "1" = 50051, which is prime.


MAPLE

fulldigRev := proc(n)
local digs ;
digs := convert(n, base, 10) ;
[op(ListTools[Reverse](digs)), op(digs)] ;
end proc:
for n from 1 to 150 do
r := [1, op(fulldigRev(n))] ;
p := add(op(i, r)*10^(i1), i=1..nops(r)) ;
if isprime(p) then
printf("%d, ", p);
end if;
end do: # R. J. Mathar, Feb 21 2013


MATHEMATICA

10#+1&/@Select[Table[FromDigits[Join[IntegerDigits[n], Reverse[ IntegerDigits[ n]]]], {n, 9999}], PrimeQ[10#+1]&](* Harvey P. Dale, Jul 06 2018 *)
10#+1&/@Select[Flatten[Table[Range[10^n, 10^(n+1)], {n, 1, 5, 2}]], PalindromeQ[ #] && PrimeQ[10#+1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 11 2019 *)


CROSSREFS

Cf. A000040, A004086, A210511.
Sequence in context: A142763 A020373 A142601 * A210511 A142824 A038647
Adjacent sequences: A210531 A210532 A210533 * A210535 A210536 A210537


KEYWORD

nonn,base,easy


AUTHOR

Jonathan Vos Post, Jan 30 2013


STATUS

approved



