login
A210487
a(n) is the smallest possible greatest prime factor of prime(n)^2 - prime(k)^2 for 0 < k < n.
2
5, 2, 3, 3, 3, 5, 3, 5, 5, 3, 5, 3, 3, 5, 5, 3, 5, 3, 7, 3, 5, 3, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 7, 3, 5, 5, 7, 7, 5, 7, 5, 7, 5, 7, 5, 5, 5, 5, 5, 11, 3, 5, 3, 11, 5, 5, 5, 7, 5, 7, 5, 7, 7, 7, 7, 5, 5, 7, 5, 5, 7, 5, 7, 3, 5, 5, 5
OFFSET
2,1
COMMENTS
a(1) is not defined because there is no prime number smaller than 2.
EXAMPLE
n = 2, prime(2) = 3, 3^2 - prime(1)^2 = 5; so a(2) = 5;
n = 3, prime(3) = 5, 5^2 - prime(1)^2 = 21 = 3*7; 5^2 - prime(2)^2 = 16 = 2^4; Min(7, 2) = 2, so a(3) = 2.
MAPLE
A210487 := proc(n)
local p, k, pk, a ;
a := ithprime(n)+ithprime(n-1) ;
p := ithprime(n) ;
for k from 1 to n-1 do
kp := ithprime(k) ;
max(A006530(p+kp), A006530(p-kp)) ;
a := min(a, %) ;
end do:
return a ;
end proc: # R. J. Mathar, Apr 17 2013
MATHEMATICA
Table[Min[Table[Last[FactorInteger[Prime[i]^2 - Prime[j]^2]][[1]], {j, 1, i - 1}]], {i, 2, 87}]
CROSSREFS
Cf. A000040.
Sequence in context: A059650 A112244 A372263 * A071216 A069483 A011226
KEYWORD
nonn,easy
AUTHOR
Lei Zhou, Jan 23 2013
STATUS
approved