login
A210452
Number of integers k<n with k-1 and k+1 both prime, and k and k*n both practical.
2
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 1, 3, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 5, 5, 4, 5, 5, 2, 4, 5, 5, 1, 5, 2, 6, 6, 5, 2, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 5, 2, 6, 3, 5, 7, 7, 7, 7, 3, 7, 7, 7, 3, 7, 4, 6, 8, 8, 8, 8, 3, 8, 8, 6, 3, 8, 8, 6, 8, 8, 3, 8, 8, 8, 7, 6, 8, 8, 3, 8, 8, 8
OFFSET
1,7
COMMENTS
Conjecture: a(n)>0 for all n>4.
This implies the twin prime conjecture since k*p is not practical for any prime p>sigma(k)+1.
Zhi-Wei Sun also made the following conjectures:
(1) For each integer n>197, there is a practical number k<n with k-2, k+2, k*n all practical.
(2) For every n=9,10,... there is a practical number k<n with k-4, k+4, k*n all practical.
(3) For any integer n>26863, the interval [1,n] contains five consecutive integers m-2, m-1, m, m+1, m+2 with m-1 and m+1 both prime, and m-2, m, m+2, m*n all practical.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Zhi-Wei Sun, Sandwiches with primes and practical numbers, a message to Number Theory List, Jan. 13, 2013.
EXAMPLE
a(11)=1 since 5 and 7 are twin primes, and 6 and 6*11 are both practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[PrimeQ[k-1]==True&&PrimeQ[k+1]==True&&pr[k]==True&&pr[k*n]==True, 1, 0], {k, 1, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 20 2013
STATUS
approved