login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210391 Number A(n,k) of semistandard Young tableaux over all partitions of n with maximal element <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 21
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 6, 1, 0, 1, 5, 16, 19, 9, 1, 0, 1, 6, 25, 44, 39, 12, 1, 0, 1, 7, 36, 85, 116, 69, 16, 1, 0, 1, 8, 49, 146, 275, 260, 119, 20, 1, 0, 1, 9, 64, 231, 561, 751, 560, 189, 25, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux

Wikipedia, Young tableau

FORMULA

G.f. of column k: 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)).

A(n,k) = Sum_{i=0..k} C(k,i) * A138177(n,k-i). - Alois P. Heinz, Apr 06 2015

EXAMPLE

Square array A(n,k) begins:

1,  1,   1,   1,   1,    1,    1, ...

0,  1,   2,   3,   4,    5,    6, ...

0,  1,   4,   9,  16,   25,   36, ...

0,  1,   6,  19,  44,   85,  146, ...

0,  1,   9,  39, 116,  275,  561, ...

0,  1,  12,  69, 260,  751, 1812, ...

0,  1,  16, 119, 560, 1955, 5552, ...

MAPLE

# First program:

h:= (l, k)-> mul(mul((k+j-i)/(1+l[i] -j +add(`if`(l[t]>=j, 1, 0)

                 , t=i+1..nops(l))), j=1..l[i]), i=1..nops(l)):

g:= proc(n, i, k, l)

      `if`(n=0, h(l, k), `if`(i<1, 0, g(n, i-1, k, l)+

      `if`(i>n, 0, g(n-i, i, k, [l[], i]))))

    end:

A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):

seq(seq(A(n, d-n), n=0..d), d=0..12);

# second program:

gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):

A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

(* First program: *)

h[l_, k_] := Product[Product[(k+j-i)/(1+l[[i]]-j + Sum[If[l[[t]] >= j, 1, 0], {t, i+1, Length[l]}]), {j, 1, l[[i]]}], {i, 1, Length[l]}]; g [n_, i_, k_, l_] := If[n == 0, h[l, k], If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a[n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten

(* second program: *)

gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); a[n_, k_] := Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 09 2013, translated from Maple *)

CROSSREFS

Rows n=0-10 give: A000012, A001477, A000290, A005900, A139594, A210427, A210428, A210429, A210430, A210431, A210432.

Columns k=0-8 give: A000007, A000012, A002620(n+2), A038163, A054498, A181477, A181478, A181479, A181480.

Main diagonal gives: A209673.

Cf. A138177, A191714.

Sequence in context: A259475 A118340 A213276 * A071921 A003992 A246118

Adjacent sequences:  A210388 A210389 A210390 * A210392 A210393 A210394

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 22:07 EDT 2018. Contains 313840 sequences. (Running on oeis4.)