This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210378 Number of 2 X 2 matrices with all terms in {0,1,...,n} and even trace. 4
 1, 8, 45, 128, 325, 648, 1225, 2048, 3321, 5000, 7381, 10368, 14365, 19208, 25425, 32768, 41905, 52488, 65341, 80000, 97461, 117128, 140185, 165888, 195625, 228488, 266085, 307328, 354061, 405000, 462241, 524288, 593505, 668168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A210378(n)+A210379(n)=(n+1)^4. See A210000 for a guide to related sequences. LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 FORMULA From Chai Wah Wu, Nov 27 2016: (Start) a(n) = (n + 1)^2*((2*n + 1 -(-1)^n)^2 + (2*n + 3 + (-1)^n)^2)/16. a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7. G.f.: (-x^6 - 6*x^5 - 27*x^4 - 28*x^3 - 27*x^2 - 6*x - 1)/((x - 1)^5*(x + 1)^3). (End) EXAMPLE Writing the matrices as 4-letter words, the 8 for n=1 are as follows: 0000, 0100, 0010, 0110, 1001, 1101, 1011, 1111 MATHEMATICA a = 0; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}] v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}] Table[u[n], {n, 0, z1}] (* A210378 *) Table[v[n], {n, 0, z1}] (* A210379 *) CROSSREFS Cf. A210000, A210379. Sequence in context: A118838 A153828 A247834 * A247534 A100648 A128091 Adjacent sequences:  A210375 A210376 A210377 * A210379 A210380 A210381 KEYWORD nonn AUTHOR Clark Kimberling, Mar 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 03:24 EDT 2019. Contains 328291 sequences. (Running on oeis4.)