%I #10 Mar 13 2017 11:02:40
%S 347,641,1427,2687,4001,4637,4931,19421,21011,22271,23741,26711,27941,
%T 32057,43781,45821,55331,55817,68207,71327,91571,128657,165701,167621,
%U 172421,179897,191447,193871,205421,234191,239231,258107,258611,259157,278807,290021
%N Prime numbers p such that x^2 + x + p produces primes for x = 0..4 but not x = 5.
%C The first term is A164926(5).
%H T. D. Noe, <a href="/A210363/b210363.txt">Table of n, a(n) for n = 1..1000</a>
%t lookfor = 5; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
%t Select[Prime[Range[26000]],AllTrue[#+{2,6,12,20},PrimeQ] && !PrimeQ[ #+30]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 13 2017 *)
%Y Cf. A067774, A164926, A210360, A210361, A210362, A210364, A210365.
%K nonn
%O 1,1
%A _T. D. Noe_, Apr 05 2012