login
Prime numbers p such that x^2 + x + p produces primes for x = 0..1 but not x = 2.
8

%I #6 Apr 06 2012 18:24:04

%S 3,29,59,71,137,149,179,197,239,269,281,419,431,521,569,599,617,659,

%T 809,827,1019,1031,1049,1061,1151,1229,1289,1319,1451,1619,1667,1697,

%U 1721,1787,1877,1931,1949,2027,2087,2111,2129,2141,2309,2339,2381,2549,2591

%N Prime numbers p such that x^2 + x + p produces primes for x = 0..1 but not x = 2.

%C The first term is A164926(2).

%H T. D. Noe, <a href="/A210360/b210360.txt">Table of n, a(n) for n = 1..1000</a>

%t lookfor = 2; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t

%Y Cf. A067774, A164926, A210361, A210362, A210363, A210364, A210365.

%K nonn

%O 1,1

%A _T. D. Noe_, Apr 05 2012