This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210287 Triangle of coefficients of polynomials v(n,x) jointly generated with A209999; see the Formula section. 3
 1, 3, 1, 6, 6, 1, 11, 18, 10, 1, 19, 45, 41, 15, 1, 32, 100, 130, 80, 21, 1, 53, 208, 352, 310, 141, 28, 1, 87, 413, 866, 994, 652, 231, 36, 1, 142, 794, 1991, 2828, 2429, 1253, 358, 45, 1, 231, 1490, 4358, 7391, 7871, 5348, 2248, 531, 55, 1, 375, 2745 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Column 1: -2+F(n+3), where F=000045 (Fibonacci numbers) Row sums: A003462 Alternating row sums: 1,2,1,2,1,2,1,2,1,2,1,2,1,2,... For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1, v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 3....1 6....6....1 11...18...10...1 19...45...41...15...1 First three polynomials v(n,x): 1, 3 + x , 6 + 6x + x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A209999 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210287 *) CROSSREFS Cf. A209999, A208510. Sequence in context: A325005 A325013 A152685 * A116412 A089511 A246257 Adjacent sequences:  A210284 A210285 A210286 * A210288 A210289 A210290 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 08:03 EDT 2019. Contains 328252 sequences. (Running on oeis4.)