This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210212 Triangle of coefficients of polynomials v(n,x) jointly generated with A210211; see the Formula section. 3
 1, 2, 2, 3, 5, 4, 4, 10, 11, 8, 5, 16, 28, 23, 16, 6, 24, 51, 72, 47, 32, 7, 33, 90, 144, 176, 95, 64, 8, 44, 138, 294, 377, 416, 191, 128, 9, 56, 208, 492, 878, 938, 960, 383, 256, 10, 70, 290, 830, 1577, 2462, 2251, 2176, 767, 512, 11, 85, 400, 1250, 2952 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS First and last terms of row n: n and 2^(n-1) Alternating row sums are signed products of two Fibonacci numbers. For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+v(n-1,x)+1, v(n,x)=u(n-1,x)+2x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 2...2 3...5...4 4...10...11...8 5...16...28...23...16 First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210211 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210212 *) CROSSREFS Cf. A210211, A208510. Sequence in context: A282443 A210554 A208912 * A209762 A026408 A301790 Adjacent sequences:  A210209 A210210 A210211 * A210213 A210214 A210215 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 03:31 EDT 2019. Contains 328211 sequences. (Running on oeis4.)