This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210203 Triangle of coefficients of polynomials u(n,x) jointly generated with A210204; see the Formula section. 3
 1, 3, 7, 2, 15, 10, 2, 31, 34, 14, 2, 63, 98, 62, 18, 2, 127, 258, 222, 98, 22, 2, 255, 642, 702, 418, 142, 26, 2, 511, 1538, 2046, 1538, 702, 194, 30, 2, 1023, 3586, 5630, 5122, 2942, 1090, 254, 34, 2, 2047, 8194, 14846, 15874, 11006, 5122, 1598, 322 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Column 1: -1+2^n Row sums: 3^(n-1) Alternating row sums: 1,1,1,1,1,1,1,1,1,... For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=u(n-1,x)+v(n-1,x)+1, v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 3 7....2 15...10...2 31...34...14...2 First three polynomials u(n,x): 1, 3, 7 + 2x. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x+1)*u[n-1, x]+(x+1)*v[n-1, x]+1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]   (* A210203 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]   (* A210204 *) CROSSREFS Cf. A210204, A208510. Sequence in context: A246377 A260421 A237427 * A318467 A245611 A063041 Adjacent sequences:  A210200 A210201 A210202 * A210204 A210205 A210206 KEYWORD nonn,tabf AUTHOR Clark Kimberling, Mar 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 13:09 EST 2019. Contains 319271 sequences. (Running on oeis4.)