login
A210202
Triangle of coefficients of polynomials v(n,x) jointly generated with A210201; see the Formula section.
3
1, 2, 3, 4, 7, 6, 7, 17, 17, 12, 12, 35, 50, 40, 24, 20, 70, 120, 135, 92, 48, 33, 134, 275, 365, 346, 208, 96, 54, 251, 593, 930, 1033, 856, 464, 192, 88, 461, 1236, 2206, 2874, 2784, 2064, 1024, 384, 143, 835, 2500, 5015, 7389, 8355, 7240, 4880
OFFSET
1,2
COMMENTS
Column 1: F(n+2)-1, where F=A000045 (Fibonacci numbers)
Row sums: A048473
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....3
4....7....6
7....17...17...12
12...35...50...40...24
First three polynomials v(n,x): 1, 2 + 3x , 4 + 7x + 6x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210201 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210202 *)
CROSSREFS
Sequence in context: A120225 A247798 A130685 * A358201 A358176 A359682
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved