This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210198 Triangle of coefficients of polynomials v(n,x) jointly generated with A210197; see the Formula section. 3
 1, 3, 1, 7, 4, 15, 12, 1, 31, 32, 6, 63, 80, 24, 1, 127, 192, 80, 8, 255, 448, 240, 40, 1, 511, 1024, 672, 160, 10, 1023, 2304, 1792, 560, 60, 1, 2047, 5120, 4608, 1792, 280, 12, 4095, 11264, 11520, 5376, 1120, 84, 1, 8191, 24576, 28160, 15360, 4032 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums:  A005409 Column 1:  -1+2^n Alternating row sums: 1, 2,3,4,5,6,..., A000027 For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=u(n-1,x)+v(n-1,x)+1, v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 3....1 15...12...1 31...32...6 63...80...24...1 First three polynomials v(n,x): 1, 3 + x , 15 + 12x + x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]   (* A210197 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]  (* A210198 *) Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A048739 *) Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A005409 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000217 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000027 *) CROSSREFS Cf. A210197, A208510. Sequence in context: A283764 A010603 A269423 * A271258 A100584 A185877 Adjacent sequences:  A210195 A210196 A210197 * A210199 A210200 A210201 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 04:35 EDT 2019. Contains 327995 sequences. (Running on oeis4.)