The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210184 Number of distinct residues of all factorials mod prime(n). 5
 2, 3, 4, 5, 6, 10, 12, 12, 17, 19, 21, 26, 29, 26, 31, 35, 37, 41, 42, 39, 44, 49, 55, 59, 59, 65, 71, 75, 63, 73, 80, 82, 90, 90, 104, 86, 103, 104, 107, 111, 113, 114, 120, 125, 120, 115, 139, 149, 132, 141, 147, 150, 147, 164, 166, 172, 172, 170, 172, 180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n)/p_n > 1/2. The standard (folklore?) conjecture is that a(n)/prime(n) = 1 - 1/e = 0.63212.... - Charles R Greathouse IV, May 11 2015 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1...1000 from Alois P. Heinz) Yong-Gao Chen and Li-Xia Dai, Congruences with factorials modulo p, INTEGERS 6 (2006), #A21. EXAMPLE Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4) = 5. MAPLE a:= proc(n) local p, m, i, s;       p:= ithprime(n);       m:= 1;       s:= {};       for i to p do m:= m*i mod p; s:=s union {m} od;       nops(s)     end: seq(a(n), n=1..100);  # Alois P. Heinz, Mar 19 2012 MATHEMATICA Table[Length[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* T. D. Noe, Mar 18 2012 *) PROG (PARI) apply(p->#Set(vector(p, n, n!)%p), primes(100)) \\ Charles R Greathouse IV, May 11 2015 (PARI) a(n, p=prime(n))=my(t=1); #Set(vector(p, n, t=(t*n)%p)) \\ Charles R Greathouse IV, May 11 2015 CROSSREFS Cf. A000040, A000142. Sequence in context: A102570 A113007 A113325 * A015853 A018642 A116998 Adjacent sequences:  A210181 A210182 A210183 * A210185 A210186 A210187 KEYWORD nonn AUTHOR Vladimir Shevelev, Mar 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 05:56 EDT 2022. Contains 353693 sequences. (Running on oeis4.)