%I
%S 762,82691,7853122,735082380,68665065250,6412474476465,
%T 598825420604059,55920736247669053,5222101046613170832,
%U 487660554256085032486,45539680595791970480828,4252676350134684608035531
%N Number of (n+1)X4 0..3 arrays containing all values 0..3 with every 2X2 subblock having one, three or four distinct values, and new values 0..3 introduced in row major order
%C Column 3 of A210086
%H R. H. Hardin, <a href="/A210081/b210081.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 111*a(n1) 1551*a(n2) 11620*a(n3) +269796*a(n4) 346276*a(n5) 10657824*a(n6) +37514734*a(n7) +105399645*a(n8) 595931403*a(n9) +25518343*a(n10) +3128667030*a(n11) 3607436824*a(n12) 4027147296*a(n13) +9243102400*a(n14) 2810113344*a(n15) 3425981120*a(n16) +1936238208*a(n17) +61521408*a(n18) 60604416*a(n19)
%e Some solutions for n=4
%e ..0..1..1..0....0..0..1..2....0..0..0..0....0..0..1..0....0..0..0..0
%e ..0..2..0..2....1..2..1..0....0..0..0..0....1..2..2..3....1..2..3..1
%e ..0..1..3..2....2..3..3..3....1..2..1..3....1..3..0..2....2..0..1..0
%e ..3..1..2..0....1..2..0..2....1..3..3..2....1..2..3..2....3..2..2..1
%e ..0..1..0..1....2..3..2..1....1..0..1..1....0..1..0..3....2..1..3..3
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 17 2012
