login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210030 Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function. 4

%I

%S 1,-2,-2,4,6,-8,-12,16,22,-30,-40,52,68,-88,-112,144,182,-228,-286,

%T 356,440,-544,-668,816,996,-1210,-1464,1768,2128,-2552,-3056,3648,

%U 4342,-5160,-6116,7232,8538,-10056,-11820,13872,16248,-18996,-22176,25844,30068

%N Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A210030/b210030.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q)^2 * eta(q^2) * eta(q^8)^2 / eta(q^4)^5 in powers of q.

%F Euler transform of period 8 sequence [ -2, -3, -2, 2, -2, -3, -2, 0, ...].

%F G.f.: (Sum_k (-1)^k * x^k^2) / (Sum_k x^(2 * k^2)).

%F a(n) = (-1)^n * A080015(n) = (-1)^[(n + 1) / 4] * A080054(n).

%F Convolution inverse of A208850.

%e 1 - 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 8*q^5 - 12*q^6 + 16*q^7 + 22*q^8 + ...

%t a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* _G. C. Greubel_, Dec 17 2017 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))}

%Y Cf. A080015, A080054, A208850.

%K sign

%O 0,2

%A _Michael Somos_, Mar 16 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 12:44 EDT 2021. Contains 343135 sequences. (Running on oeis4.)