login
A210029
Number of sequences over the alphabet of n symbols of length 2n which have n distinct symbols. Also number of placements of 2n balls into n cells where no cell is empty.
8
1, 14, 540, 40824, 5103000, 953029440, 248619571200, 86355926616960, 38528927611574400, 21473732319740064000, 14620825330739032204800, 11941607887300551753216000, 11523529003703200697461248000, 12970646659082235068963297280000
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{v=0..n-1}( (-1)^v * binomial(n,v) * (n-v)^(2n) ).
a(n) = n! * S2(2*n,n), where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind. - Paul D. Hanna, Oct 26 2012 [Also the central column of A131689 (suggesting a(0) = 1). - Peter Luschny, Sep 11 2019]
E.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} a(n)*x^n/n!. - Paul D. Hanna, Oct 26 2012
a(n) ~ n^(2*n)*(2/(exp(c)*(2-c)))^n / sqrt(1-c), where c = -LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013
O.g.f.: Sum_{n>=1} n^(2*n) * x^n / (1 + n^2*x)^(n+1). - Paul D. Hanna, Feb 24 2013
a(n) = [x^n] P(2*n) where P(n) = Sum_{k=1..n} binomial(n, k)*P(n-k)*x based in P(0) = 1. - Peter Luschny, Sep 11 2019
EXAMPLE
a(2) = 14 because the 2^4 sequences on 2 symbols of length 4 can be represented by 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,1110, and 1111. Only two of them do not have n distinct symbols.
a(10)= 21473732319740064000 since all digits appear in 21473732319740064000 nonnegative integers with 20 digits.
O.g.f.: A(x) = 1 + 14*x + 540*x^2 + 40824*x^3 + 5103000*x^4 + ... where
A(x) = x/(1+x)^2 + 2^4*x^2/(1+4*x)^3 + 3^6*x^3/(1+9*x)^4 + 4^8*x^4/(1+16*x)^5 + 5^10*x^5/(1+25*x)^6 +... - Paul D. Hanna, Feb 24 2013
E.g.f.: E(x) = 1 + 14*x + 540*x^2/2! + 40824*x^3/3! + 5103000*x^4/4! + ... where
E(x) = exp(-x)*x + 2^4*exp(-4*x)*x^2/2! + 3^6*exp(-9*x)*x^3/3! + 4^8*exp(-16*x)*x^4/4! + 5^10*exp(-25*x)*x^5/5! +... - Paul D. Hanna, Feb 24 2013
MAPLE
P := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*P(n-k)*x, k=1..n)) end:
a := n -> coeff(P(2*n), x, n); # Peter Luschny, Sep 11 2019
MATHEMATICA
Table[Sum[((-1)^v*Binomial[n, v]*(n - v)^(2 n)), {v, 0, n - 1}], {n, 20}] (* T. D. Noe, Mar 16 2012 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=1, n, (m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!), n)} \\ Paul D. Hanna, Oct 26 2012
(PARI) {a(n)=polcoeff(sum(k=1, n, (k^2)^k*x^k/(1+k^2*x +x*O(x^n))^(k+1)), n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 24 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, Mar 16 2012
STATUS
approved