The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210021 Number of binary words of length n containing no subword 11011. 4
 1, 2, 4, 8, 16, 31, 60, 116, 225, 437, 849, 1649, 3202, 6217, 12071, 23438, 45510, 88368, 171586, 333171, 646922, 1256136, 2439055, 4735945, 9195847, 17855697, 34670640, 67320433, 130716961, 253814826, 492835556, 956945224, 1858113016, 3607922263, 7005549684 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Aashir Shukla et al., How many Binary Strings of length N contain within it the substring '11011'?, Mathematics Stack Exchange, circa Sep 09 2016. Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1,1). FORMULA G.f.: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1). a(n) = 2^n if n<5, and a(n) = 2*a(n-1) -a(n-3) +a(n-4) +a(n-5) otherwise. EXAMPLE a(7) = 116 because among the 2^7 = 128 binary words of length 7 only 12, namely 0011011, 0110110, 0110111, 0111011, 1011011, 1101100, 1101101, 1101110, 1101111, 1110110, 1110111 and 1111011 contain the subword 11011. MAPLE a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>, <1|1|-1|0|2>>^n. <<1, 2, 4, 8, 16>>)[1, 1]: seq(a(n), n=0..40); MATHEMATICA LinearRecurrence[{2, 0, -1, 1, 1}, {1, 2, 4, 8, 16}, 40] (* Vincenzo Librandi, Oct 24 2016 *) PROG (Magma) I:=[1, 2, 4, 8, 16]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Oct 24 2016 CROSSREFS Column k=27 of A209972. Cf. A276785. Column k=0 of A277678. Sequence in context: A141019 A210003 A209888 * A226188 A239556 A152718 Adjacent sequences: A210018 A210019 A210020 * A210022 A210023 A210024 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Mar 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 20:32 EST 2022. Contains 358570 sequences. (Running on oeis4.)